Image Synthesis Project
Paper: High Resolution Sparse Voxel DAGs [1]

Alexandre Pérot

I. INTRODUCTION

Ray tracing is shown a growing interest for real time ren-
dering, as a way to truthfully simulate secondary illumination.
However, for meshes with high level of detail (and augmented
with displacement maps), the high triangle-count slows down
the execution since it affects for example both the primary
ray and secondary ray computations. Therefore, Sparse Voxel
Octrees (SVO) are a promising field of research as a secondary
scene representation. Indeed, it can provide a representation of
the scene with varying level of details (lowering the level of
detail when evaluating secondary ray does not affect the result
much) which can be passed through with a time complexity
that only depends on the level of detail chosen. However, high
resolution SVO are heavy objects, hence the paper [1] presents
a strategy to compress SVO without hindering the query time
complexity.

II. SUMMARY OF THE PAPER
A. Data format

First of all, the SVO is stored in the following format. Each
node is composed of a childmask (an 8-bit bitmask such that
the bit ¢ represents whether or not the child voxel of index
1 is empty or not) followed by 32-bits pointers to the non-
empty children (in order). Leaves of the SVO only contain a
childmask. Though the childmask is only 8-bit, it is stored in
a 32-bits unit next to the following pointers. In addition to
that, they chose to represent the 2 lower levels (4 resolution
voxels) as 64-bits integers. In summary, the SVO is
stored as a vector of 32-bits values (the nodes) and a vector
of 64-bits values (the leaves).

B. Computation of the SVO

In the paper, the SVO is computed using triangle-cube inter-
section for the first levels, and then using depth peeling (ras-
terization based process, which becomes faster than triangle-
cube intersection when the number of triangles becomes small
compared to the number of cubes). The authors point out that
this is not the most efficient SVO construction algorithm.

C. Sparse Voxel Directed Acyclic Graph

The authors of the paper identified that the SVO contained
many identical subtrees. Therefore, their contribution is to
propose an algorithm to remove these repetitions from the
data structure, by transforming the SVO into a Sparse Voxel
Directed Acyclic Graph (SVDAG). To do so, we identify
identical subtrees in the SVO with a bottom-up approach
and merge them. Concretely, they sort the nodes of a given

level using lexicographic order which then allows them to
quickly identify the identical nodes, merge them and update
the pointers of the higher level. If the SVO is too big to
be stored before being transformed into a SVDAG, one can
start transforming a partial SVO into a SVDAG (for example
the eight subtrees starting at depth 1 can be computed and
transformed one-by-one).

D. Rendering

The paper does not propose any novel method to ray trace
using the SVDAG. SVDAG can only be used for shadows and
Ambient Occlusion (AO) because it does not store shading
parameters. Since the goal of the paper is to evaluate the
SVDAG, the authors still chose to compute the hit point of
the primary and secondary rays with the SVDAG and then
use a parallel SVO containing shading parameters to compute
the color response.

To compute shadows and AO, since the SVDAG is queried
exactly like a SVO, they refered to [2] for the computation
of shadow rays (i.e function that output whether or not the
ray was blocked before a maximal distance) and [3] for an
algorithm to evaluate AO using only shadow rays.

ITII. IMPLEMENTATION
A. Construction of the data structure

1) Data format: Because C++ pointers are not necessar-
ily 32-bits and to ensure the data is stored contiguously, I
used 32-bits unsigned int as pointers that store the index
of the child node in its container (a vector). I used one
vector of 32-bits unsigned integer per level. There-
fore, childmasks are represented as 32-bits unsigned
integer too but only the last 8-bits are significant and the
rest is always null.

2) SVO: 1 only used triangle-AABB intersection to con-
struct the SVO, with the formula presented in [4] which uses
a trick (translating everything on the refential centered on the
AABB) to prevent redundant computations (only one vertice
of the AABB instead of 8 on the candidate separating axes).

Because a node needs to store a pointer to the position of
its children when created, and because the size of a node is
not constant (it can range between 4 and 36 bytes), we can
not create a node before all its children are created. Therefore,
I used a recursive function to construct the SVO bottom-up.
When this function is called on a voxel, with a list of triangles
to test, it does the following:

« create a list of the triangles that intersect the voxel,

o if it is not empty, call the function on each of the
8 children voxels by giving them the list of triangles
as argument and create a node with the results of the
recursive call (the position of the children’s nodes, if not
empty)
« returns whether or not the voxel is empty, and the position
of the the node if not empty.
During the construction of a SVO of depth L, I kept for the
L —2 first levels a temporary vector of pointers to the position
(of the childmask) of each node, which will be used for the
reduction into a DAG.

3) Compression of the lower levels: By using the temporary
vector pointing to the nodes in the level L — 2, I transform
each of these nodes into a 64-bits unsigned integer
leaf representing the subtree of depth 2 starting at this node.
This is done simply by concatenating the 8 childmasks of the
level L — 1 children nodes (and adding 8 null bits when the
node is empty).

4) DAG: To reduce the SVO into a SVDAG, first identical
leaves are found and merged (using a set data structure), and
the nodes in the last level are updated accordingly.

Then a similar process is done bottom-up. However, since
the nodes are not of fixed size, at each level, I kept (in addition
to the already computed vector of position of the beginning
of each nodes nodepeqin) a vector containing the position of
the end of each node node.,q. I can then define comparison
operation for nodes’ indexes and use them to sort the indexes
of the nodes. I had to sort a separate vector containing the
indexes of the nodes instead of sorting directly nodeycgin
because node.,q needed to be sorted simultaneously in the
exact same way. Once the sorting is done, I can remove

identical nodes. Like the authors of [1], I keep a map from
the old node position to the new index of the node and use it
to update the pointers of the higher level.

B. Ray tracing using the data structure

I decided to use the SVDAG for shadow and AO computa-
tion. Therefore, I only needed a function to test shadow rays
(i.e whether or not a ray is blocked before a certain maximal
distance).

1) Shadow ray traversal: The algorithm used for the
shadow ray is heavily inspired by [2]. The first step is to
locate the ray.

o if the ray is outside the biggest voxel (which should
not happen for shadow rays in theory but may occur
due to the offset on the ray origin used to avoid self
shadowing), the ray either don’t intersect the voxel (then
return false), or we can define an entry_point € R3
and an entry_direction € 0,1,2 which is the axis from
which the ray entered the voxel.

o if the ray is inside, we define entry_direction and
entry_point by seeing where the ray exits the voxel it is
currently in (the ray is not blocked by the starting voxel
to avoid self shadowing).

The current voxel is represented by a stack corresponding
to the path in the SVDAG to the voxel and we move along
the ray until it is blocked, has reached the maximal distance
or exited the SVDAG by using the following operations:

o PUSH: If the voxel is not empty but not at maximal depth,
we find the child voxel that contains the entry_point.

o ADVANCE and POP: If the voxel is empty, we compute
the axis on which we need to shift to advance (the
direction of the shift depending of the sign of the ray’s
direction along the shift axis) and pop nodes from the
stack until we can advance on the shift axis.

« BLOCKED: if the voxel is at maximal depth and full,
the ray is blocked, we return whether or not the distance
condition is respected.

In my implementation, because the lower levels are com-
pressed into full Voxel Octrees, I implemented separate func-
tions to manage the traversal of these lower levels which do
not require a stack and that are called when ADVANCE is
used on a node of the lowest level.

This function can then be used as is to replace the function
(based on a BVH) used in the ray tracing software application
developed during the practical sessions.

2) Ambient occlusion: Ambient occlusion is often com-
puted using the following formula:

A0(pm) =~ [p(D(p,w))w.n)du
T Jwen

where p is a falloff function (a decreasing function),) the
hemisphere around the normal and D the distance of the
first hit. To approximate this integral, we use a Monte-Carlo
scheme by sampling rays on the hemisphere with a cosine
function. In practice, according to inverse transform sampling,
I simply had to sample the sine of theta (spherical coordinates)
uniformly in [0, 1].

However, as is, this method requires knowing at which
distance the ray was blocked. The paper [3] proposes a
sampling method to allow the use of simple shadow rays that
do not output D the distance of the first hit. To do so, we
use the falloff function to sample a maximum distance [for
the shadow ray. More precisely, quick computations show that
if the falloff function is strictly decreasing and p(0) = 1, we
can sample [with the probability distribution p(l) = —p'(1),
since:

E(O(p,w,1)) = E(E(1;>p|D)) = E(p(l > D)).

In my implementation, I used an exponential falloff function

p(d) = e~ %, where A needs to be of a magnitude similar to

the size of the objects of the scene. Indeed, this formula gives
1

an exponential distribution of parameter for the maximum

distance [(which means that it will be A in average).

IV. RESULTS

To check the sanity of the SVDAG structure, we can use
it to render with a parallel projection along one of the main
axes. The result of such rendering with example_highres can
be seen on Figure 1.

Fig. 1. Projection of the computed SVDAG along the z-axis, using grey-scale
to represent the maximum coordinate along the z-axis

A. Size
TABLE 1
SIZE OF THE DATA STRUCTURE
Mesh Resolution Structure Size Nodes!
example_highres 10243 SVO 11Mo 2.8M
SVOc> 38Mo 87K +260K
SVDAG 1.9Mo 73K + 37K
20483 SVO 44Mo 11M
SVOc 15Mo 350K + IM
SVDAG 6.4Mo 270K + 48K
40963 SVO 180Mo 44M
SVOc 61Mo 14M + 4.1M
SVDAG 23Mo 970K + 55K
81923 SVO 710Mo 180M
SVOc 240Mo 5.5M + 17M
SVDAG 77Mo 3.3M + 65K
example_lowres 20483 SVO 44Mo 11M
SVOc 15Mo 350K + IM
SVDAG 5.7Mo 240K + 44K
raptor 20483 SVO 36Mo oM
SVOc 12Mo 270K + 840K
SVDAG 6.7Mo 240K + 190K

As we can see in Table I, the SVDAG is always more
memory efficient than the SVO. This result was expected,

IWhen the lower levels are compressed, the corresponding nodes are not
counted and the number of such subtrees is given next to the number of nodes
2SVO data structure with the lower levels compressed in 64bits

because I did not use memory efficient ways of storing the
SVO and therefore, since the SVDAG and the SVOc (with
compressed lower levels) are stored the exact same way, the
SVDAG is necessarily smaller in terms of size.

Also, as expected, Table II shows that the lower levels of
the tree are were most of the size reduction is found, since
this is were most nodes are while the size of the space of
different possible nodes is smaller. It is interesting to note
that the number of different nodes kept after reduction in the
SVDAG at level 9 (for a depth of 11, and a reduced depth
of 9) is much smaller that the size of the space of different
possible nodes 264, It is because most of these subtrees are
the result of a plane-voxel intersection (since the resolution is
quite high), and therefore, many configuration do not happen.

Another interesting point highlighted by the comparison of
the example_highres and the example_lowres meshes is that
the more detailed the mesh is, the less compression there is
by using SVDAG. Indeed, at the same resolution, the lowres
mesh will provide simpler shapes (mainly planes with varying
orientations) which have a higher chance of appearing many
times at different places. Therefore, a high polygon count has
only an effect on the compression into a SVDAG whereas
the SVO keep similar sizes. The mesh raptor, which has
the highest polygon-count, illustrates well this concept: the
SVO is smaller than the one of the example_lowres and
example_highres (because there are more blank spaces due
to the shape of the mesh), however, the SVDAG is bigger
because of the high level of detail that reduced the amount of
similar patterns.

TABLE I
NUMBER OF STORED NODES PER LEVEL

Level SVO SVOc SVDAG
0 1 1 1

1 8 8 8

2 54 54 54

3 238 238 238

4 989 989 989

5 4K 4K 4K

6 16K 16K 16K

7 65K 65K 60K

8 260K 260K 190K
9 M IM(64bits) 48K (64bits)
10 4.2M - -

11 (implicit) - - -

B. Construction speed

Table III displays the construction time of the SVDAG
structure for different resolutions for a given mesh. These
speeds are not optimal: for example, part of the process could
be parallelized.

Fig. 2. Rendering with only AO (16 samples per pixel, 64 AO samples per ray, no light source, no secondary rays), with different falloff characteristic

distances (left: 0.4, right: 1).

TABLE III
CONSTRUCTION TIME FOR example_highres

Depth Resolution Construction time
10 10243 16s
11 20483 37s
12 40963 92s
13 81923 290s

C. Shadow rays

Fig. 3. Parallel rendering (using the SVDAG) of the scene used for rendering.
The diagonal that can be seen is the plane placed below the mesh. In red are
voxels that are blocked from the light source by another voxel (computed
using the shadow rays of the SVDAG).

Figure 3 illustrates the proper behavior of the implemented
shadow ray routine of the SVDAG.

D. Ambiant occlusion

Figure 2 illustrate ambient occlusion with different falloff
characteristic distances (used in the exponential falloff func-
tion). We can see in the shadow how a high distance creates
higher scale phenomenon (such as the mutual shadowing of the
face and the plane), without impacting smaller scale effects.
Figure 4 shows how adding ambiant occlusion impacted the
final result. The eyes and the ears are where the difference is
most noticeable.

E. Ray tracing speed

TABLE IV
EXECUTION SPEED OF THE RAYTRACING

Scene Method Execution speed

(+ SVDAG construction)

example_highres BVH 74s
SVDAG 46s (+16s)

example_lowres BVH 41s
SVDAG 38s (+6s)

raptor BVH 59s
SVDAG 46s (+32s)

Fig. 4. Rendering using the SVDAG for shadow rays, using a square light source, 16 ray per pixel, 3 bounces and 16 secondary rays (importance sampling).
For secondary rays, only one sample with the direction with maximum probability (reflection) is used for subsequent bounces. left: with AO (1.0m falloff
distance, 16 rays for AO estimation on the primary ray, 1 ray for secondary rays), right: without AO

Table IV displays the execution speed of the ray tracing
application when using BVH (as in the practical sessions) or
the SVDAG to compute the shadow rays for both shadows and
AO, on different scenes. All DAGs have a depth of 11 which
was mandatory to obtain proper AO on the example_highres
mesh (eyelid/eyeball contact for example). The scene consists
of the mesh and a plane (see Figure 3 for a zoomed out
representation of the global scene). The construction times are
higher in Table III than in Table IV because the addition of
the plane in the scene increased the size of the root voxel and
created lots of empty space (see Figure 3).

V. CONCLUSION

In conclusion, the SVDAG structure effectively reduces the
size of a SVO structure (even though we did not use the
most size efficient SVO data structure, the paper shows that
SVDAG remains often better, without further optimization of
the format). Moreover, I could show that using a secondary
structure to represent a scene improved the rendering speed (if
we do not count the construction time). However, considering
the time spent constructing the structure could be optimized
(parallelisation) and a structure can be reused as long as the
meshes do not move in the global frame, the results are still
pertinent. Finally, it was an occasion to implement ambiant
occlusion in the rendering software of the practical sessions
and study its impact on the realism of the rendered image.

The main improvement that could be made to the software
and that was not implemented in my work is the use of
different levels of detail in the SVDAG for secondary rays to
further speed up rendering without changing the result image
much.

REFERENCES

[1] V Kdmpe and al. High Resolution Sparse Voxel DAGs http://www.cse.
chalmers.se/~uffe/HighResolutionSparse Voxel DAGs.pdf, 2013.

[2] S. Laine and al. Efficient Sparse Voxel Octrees — Analysis, Exten-
sions, and Implementation https://research.nvidia.com/sites/default/files/
pubs/2010-02_Efficient- Sparse- Voxel/laine2010tr1_paper.pdf, 2010.

[3] S. Laine and al. Two Methods for Fast Ray-Cast Ambient Occlusion
https://users.aalto.fi/~laines9/publications/laine2010egsr_paper.pdf, 2010.

[4] AABB-Triangle Intersection https://gdbooks.gitbooks.io/3dcollisions/
content/Chapter4/aabb-triangle.html

VI. APPENDIX

Fig. 7. Rendering of the raptor mesh using the same parameters as in Figure 4

Fig. 5. Parallel projection of the SVDAG along the z-axis. In red are the
voxels that are blocked from a given point light source by another voxel. The
light is in (2,2,4) while the root voxel has a size of (1.6, 0.8, 0.3) approximately
centered on the origin and the viewer’s plane (i.e white pixels) is z=0.15. The
mesh is deformed because voxels don’t have to be isotropic, therefore we
chose the root voxel as the bounding box of the mesh.

Fig. 8. Rendering of the example_highres mesh using a high amout of sample
rays (64 samples per pixel, secondary rays and rays for ambient occlusion)

Fig. 6. Rendering of the example_lowres mesh using the same parameters as
in Figure 4

